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Inverse Problems

y = A(x∗) + e.

y ∈ Y Data

x∗ ∈ X Image

A : X → Y Forward operator

e ∈ Y Noise

A−→

←−
”A−1 ”

The problem is ill-posed: non-uniqueness, instability
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Statistical viewpoint

Data y ∈ Y is a single observation generated by Y -valued random variable y where

y = A(x) + e.

Full solution: A probability distribution on model parameter space X

P(x | y = y)

This is a full characterization of the reconstruction, including uncertainty.

Typical solution: Compute some estimator, e.g. the conditional mean

E
[
x | y = y

]
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Risk minimization

Theorem (Conditional Mean)
Assume that Y is a measurable metric space, X a measurable Hilbert space, and y and

x are Y - and X-valued random variables, respectively. Let

h∗ = arg min
h : Y→X

E
[∥∥h(y)− x

∥∥2

X

]
.

Then h∗(y) := E
[
x | y = y

]
almost everywhere.
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Empirical risk minimization

• Suppose we aim to compute

E
[
x | y = y

]
• This can be done by solving
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Empirical risk minimization

• Suppose we aim to compute

E
[
x | y = y

]
• This can be done by solving

min
θ∈Θ

1

N

N∑
i=1

∥∥A†θ(y i )− x i
∥∥2

X

This is a ”computationally tractable” formulation, we just need to pick {A†θ}θ∈Θ.

Jonas Adler jonasadler.com 5 / 17



Learned inversion methods

Architecture: Specification of the class of operators {A†θ}θ∈Θ.

Main complication: A†θ : Y → X .

−→
A†θ

• Fully learned:

• Learned post-processing:

• Learned iterative schemes:
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Learned inversion methods

Architecture: Specification of the class of operators {A†θ}θ∈Θ.

Main complication: A†θ : Y → X .

−→
A†θ

• Fully learned: Learn everything, disregard structure.

• Learned post-processing: First apply standard inverse, then denoise A†θ = Pθ ◦ A†

• Learned iterative schemes: Embed physics inside deep neural network
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Quality of reconstruction

How well does this actually work?

Measure generalization gap:

E
[∥∥A†θ∗(y)− x

∥∥2

X

]
− E

[∥∥E[x | y]− x
∥∥2

X

]
.
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Results on toy case

Results for ray transform inversion in 2D:

• Inverse problem:

y = A(x) + e

• Geometry: Parallel beam, sparse view (30 angles)

• Noise: 5% additive Gaussian

• Training data: 128× 128 pixel ellipses

Compare to:

• FBP

• Total Variation

• Post-processing deep learning by U-Net

• Conditional expectation, E(x | y), via MCMC

Measure relative error:

E
[∥∥A†θ∗(y)− x

∥∥2

X

]
E
[∥∥E[x | y]− x

∥∥2

X

]
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Training data



Phantom FBP

Normalized error: 372



Phantom TV

Normalized error: 56.0



Phantom Learned Post-processing

Normalized error: 42.2



Phantom Learned Iterative

Normalized error: 5.2



Phantom Conditional Expectation

Normalized error: 1



Conclusions on learned reconstruction

• We can find a reconstruction operator by solving a minimization problem

• Architecture: Specification of the class of operators {A†θ}θ∈Θ.

• Learning:

min
θ∈Θ

1

N

N∑
i=1

∥∥A†θ(yi )− xi
∥∥2

X

• Empirically, current methods are remarkably close to optimal
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What now?

• Apparently deep learning techniques are great for the conditional mean

• What about other estimators?

• Maximum a-posteriori is very hard

• But, what about finding the whole posterior?
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Generative Advesarial Networks

• Main idea: train two networks, generator G and discriminator D

• Generator tries to generate ”true” samples, discriminator tries to say ”good/bad”
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y = y).

Approach: Learn how to sample from posterior by solving

min
θ

Ey∼Pdata

[
W
(
Gθ(y),P(x | y)

)]
.

We minimize the Wasserstein distance between the random variables Gθ(y) and

P(x | y)!
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y = y).

Approach: Learn how to sample from posterior by solving

min
θ

{
max

D∈Lip(X )
E
[

D(x, y)− D(Gθ(y))

]}
.

Formulation useful for deep learning
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Data FBP

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%
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Data FBP Standard deviation

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
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Normal dose image
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Histogram of 4

Posterior mean with ROI
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Normal dose image
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Histogram of 4 Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Conclusion

• Deep Learning methods for inverse problems building on empirical risk

minimization are very powerful

• Fruitful ways forward involve questioning what we’re trying to compute

• Posterior sampling is one such option
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Postdoc in Deep Learning based Reconstruction for Spectral-CT

• Theory and methods for machine learning in image reconstruction.

• We’ve got the worlds first clinical photon counting spectral-CT data.

• Very nice position (great group, travel, salary)

• Pursued jointly with MedTechLabs and the Medical Imaging group at KTH.

Jonas Adler jonasadler.com 16 / 17

https://www.medtechlabs.se/en/medtechlabs/


Thank you for your attention!
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