Deep Learning for Inverse Problems

Where are we? How far can we go?

Jonas Adlert 2 Ozan Oktem?

!Department of Mathematics
KTH - Royal Institute of Technology, Stockholm, Sweden

?Research and Physics
Elekta, Stockholm, Sweden

ahp

Ly,
EKTHY

VETENSKAP

Elekta



Inverse Problems

y = A(x*) +e.
yey Data
x*eX Image
A: X =Y Forward operator
eeyY Noise
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Inverse Problems

yeyY Data A
x*eX Image «
A: X =Y Forward operator mATE
eeyY Noise

The problem is ill-posed: non-uniqueness, instability
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Statistical viewpoint

Data y € Y is a single observation generated by Y-valued random variable y where

y = A(x) +e.
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Full solution: A probability distribution on model parameter space X

P(x|y=y)

This is a full characterization of the reconstruction, including uncertainty.
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Statistical viewpoint

Data y € Y is a single observation generated by Y-valued random variable y where

y = A(x) +e.

Full solution: A probability distribution on model parameter space X

P(x|y=y)

This is a full characterization of the reconstruction, including uncertainty.

Typical solution: Compute some estimator, e.g. the conditional mean

Elx|y=y]
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Theorem (Conditional Mean)
Assume that Y is a measurable metric space, X a measurable Hilbert space, and'y and

x are Y- and X-valued random variables, respectively. Let

i = 'E[h - 2].
eI =l

Then h*(y) :=E[x | y = y] almost everywhere.
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Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

Jonas Adler  jonasadler.com 5/17



Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

h:n\}ing{”h(Y) —xHi}

Jonas Adler  jonasadler.com 5/17



Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

_min E[[|n(y) = x|[%].

The minimization is over all measurable functions
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Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

minE[ A)(y) — xHi]

0cO

The minimization is over all measurable functions
Restrict minimization to some tractable subset
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Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

min |4} (y) — x| .

Expectation is taken over the unknown joint distribution
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Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

N
1
g gy 2 [450) - xill%

Expectation is taken over the unknown joint distribution
Replace with empirical mean
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Empirical risk minimization

e Suppose we aim to compute
Elx|y=y]

e This can be done by solving

This is a " computationally tractable” formulation, we just need to pick {A;}gee.
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Learned inversion methods

Architecture: Specification of the class of operators {A)}gco.
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Learned inversion methods

Architecture: Specification of the class of operators {Ag}ge@.

Main complication: AZ Y = X.

o Fully learned: Learn everything, disregard structure.
e Learned post-processing: First apply standard inverse, then denoise AI) = Pyo Al

e |earned iterative schemes: Embed physics inside deep neural network
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Quality of reconstruction

How well does this actually work?

Measure generalization gap:

E[||45. (v) = x|[% | — E[ Il | v] = x|3].
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Results on toy case

Results for ray transform inversion in 2D:

e Inverse problem:
y=A(x) +e
e Geometry: Parallel beam, sparse view (30 angles)

e Noise: 5% additive Gaussian

e Training data: 128 x 128 pixel ellipses
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Results on toy case

Results for ray transform inversion in 2D:

e Inverse problem:

y=A(x) +e
e Geometry: Parallel beam, sparse view (30 angles)
e Noise: 5% additive Gaussian

e Training data: 128 x 128 pixel ellipses

Compare to:
Measure relative error:
e FBP
2
e Total Variation E[HAT*(Y) N XHX}
e Post-processing deep learning by U-Net E[HE[X | Y] - XH?(}

e Conditional expectation, E(x | y), via MCMC
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Phantom

Normalized error: 372




Phantom TV
Normalized error: 56.0




Phantom Learned Post-processing

Normalized error: 42.2




Phantom Learned lterative

Normalized error: 5.2




Phantom Conditional Expectation

Normalized error: 1




Conclusions on learned reconstruction

We can find a reconstruction operator by solving a minimization problem

Architecture: Specification of the class of operators {Ag}gge.

Learning:
min 1 gN H.AT(y-) — X'H2
66 N < oA P

Empirically, current methods are remarkably close to optimal
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e Apparently deep learning techniques are great for the conditional mean
e What about other estimators?

e Maximum a-posteriori is very hard
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Apparently deep learning techniques are great for the conditional mean

What about other estimators?

e Maximum a-posteriori is very hard

But, what about finding the whole posterior?
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Generative Advesarial Networks

e Main idea: train two networks, generator G and discriminator D
e Generator tries to generate "true” samples, discriminator tries to say "good/bad”
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Conditional Wasserstein GAN

Input: Supervised training data (x;, y;) generated by (x,y).
Goal: Sample from unknown posterior P(x | y = y).

Approach: Learn how to sample from posterior by solving
min By.p,,, [W(Go(y), P(x | ).

We minimize the Wasserstein distance between the random variables Gy(y) and
P(x|y)!
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Re-write using the Kantorovich-Rubinstein dual characterization of W.
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Conditional Wasserstein GAN

Input: Supervised training data (x;, y;) generated by (x,y).
Goal: Sample from unknown posterior P(x | y = y).
Approach: Learn how to sample from posterior by solving
i ax E|D(x,y) — D(G .
mﬁm{DeTip)((X) [ (x,y) = D( e(y))]}

Formulation useful for deep learning
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Data FBP

e Case: Patient with suspected metastasis to the liver.

e Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).



Data FBP Posterior mean
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Data FBP Standard deviation

e Case: Patient with suspected metastasis to the liver.
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Posterior mean with ROI

Case: Patient with suspected metastasis to the liver.
Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
Liver lesion: A = difference in average contrast between ROI and liver.

Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%
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Histogram of A Posterior mean with ROI

Case: Patient with suspected metastasis to the liver.
Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
Liver lesion: A = difference in average contrast between ROI and liver.

Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%
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Normal dose image Histogram of A Posterior mean with ROI

e Case: Patient with suspected metastasis to the liver.
e Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
e Liver lesion: A = difference in average contrast between ROI and liver.

e Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%



Conclusion

e Deep Learning methods for inverse problems building on empirical risk
minimization are very powerful

e Fruitful ways forward involve questioning what we're trying to compute

e Posterior sampling is one such option
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Postdoc in Deep Learning based Reconstruction for Spectral-CT

Theory and methods for machine learning in image reconstruction.

We've got the worlds first clinical photon counting spectral-CT data.

Very nice position (great group, travel, salary)

Pursued jointly with MedTechLabs and the Medical Imaging group at KTH.
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https://www.medtechlabs.se/en/medtechlabs/
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Thank you for your attention!
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