Deep Bayesian Inversion

Jonas Adler

Department of Mathematics KTH - Royal Institute of Technology, Stockholm, Sweden

Research and Physics Elekta, Stockholm, Sweden

- Bayesian Inversion
- Direct Estimation
- Posterior Sampling

Bayesian Inversion

Inverse problem (Statistical viewpoint)

Data $y \in Y$ is a single observation generated by Y-valued random variable **y** where

 $\mathbf{y} = \mathcal{A}(\mathbf{x}) + \mathbf{e}.$

Solution: A probability distribution on model parameter space X

$$\mathbb{P}(\mathsf{x} \mid \mathsf{y} = y)$$

This is a full characterization of the reconstruction, including uncertainty. We don't need to select estimators (e.g. task adapted becomes irrelevant).

Recall some nice properties from yesterday:

- The posterior almost always exists
- The mapping

$$y \to \mathbb{P}(\mathsf{x} \mid \mathsf{y} = y)$$

is continuous.

• We can characterize convergence (Bernstein-von Mises)

• Bayes Law:

$$\mathbb{P}(x \mid y) = rac{\mathbb{P}(y \mid x)\mathbb{P}(x)}{\mathbb{P}(y)}$$

• We know the data likelihood

 $\mathbb{P}(y \mid x)$

• Only have to specify the prior

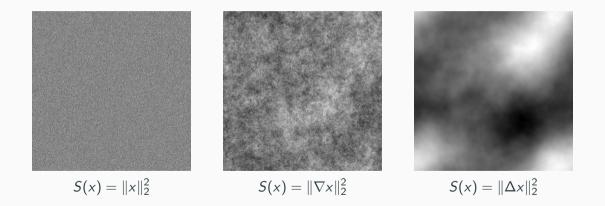
 $\mathbb{P}(x)$

• Standard approach: Gibbs priors

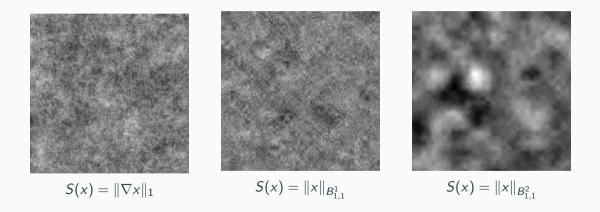
$$\mathbb{P}(x) = e^{-S(x)}$$

Jonas Adler jonasadler.com

Bayesian Inversion: Samples



Bayesian Inversion: Samples



• The posterior is enormously high dimensional

 $\mathbb{P}(x \mid y)$

• Example: 2×2 image, 32 bits/pixel. Dimensionality of the posterior:

 $32^{2 \times 2} = 1024 \times 1024$

Hence the posterior of 2 \times 2 images is as high dimensional as 1024 \times 1024 images!

- Not even a chance that we could store it.
- All we can hope for is some estimator.

- Framework for solving inverse problems
- Strong regularizing properties
- Uncertainty quantification
- Basically parameter free
- Classical methods are relatively slow and require closed form prior

Deep Direct Estimation

Estimating uncertanity (and more) using neural networks without $\mathbb{P}(\textbf{x} \mid \textbf{y})$

Bayesian Inversion: Hopes and dreams

What would we do if we had $\mathbb{P}(\mathbf{x} \mid \mathbf{y})$?

• Variance

$$\mathbb{E}\Big[\big(\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y} = y]\big)^2 \mid \mathbf{y} = y\Big]$$

• Covariance

$$\mathbb{E}\Big[\big(\mathbf{x}_1 - \mathbb{E}[\mathbf{x}_1 \mid \mathbf{y} = y]\big)\big(\mathbf{x}_2 - \mathbb{E}[\mathbf{x}_2 \mid \mathbf{y} = y]\big) \mid \mathbf{y} = y\Big]$$

• Bayesian hypothesis testing

$$\mathbb{P}(\mathbf{x} \in \Omega \mid \mathbf{y} = y) = \mathbb{E}\Big[\mathbbm{1}_{\Omega}(\mathbf{x}) \mid \mathbf{y} = y\Big]$$

Deep Direct Estimation: The main insight

• The quantities we're looking for have the form

$$\mathbb{E}\Big[\mathbf{w}\mid\mathbf{y}=y\Big]$$

- Mean (reconstruction): **w** = **x**
- Variance: $\mathbf{w} = (\mathbf{x} \mathbb{E}[\mathbf{x} \mid \mathbf{y} = y])^2$
- Hypothesis: $\mathbf{w} = \mathbb{1}_{\mathbf{x}_1 > \mathbf{x}_2}$
- Deep neural networks are trained by solving

$$\min_{h: \mathbf{Y} \to W} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{w} \big\|_{W}^{2} \Big].$$

Theorem (Conditional Mean)

Assume that Y is a measurable space, W a measurable Hilbert space, and \mathbf{y} and \mathbf{w} are Y- and W-valued random variables, respectively. Let

$$h^* = \operatorname*{arg\,min}_{h: \ Y o W} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{w} \big\|_W^2 \Big].$$

Then $h^*(y) := \mathbb{E}[\mathbf{w} \mid \mathbf{y} = y].$

Deep Direct Estimation: Theoretical foundations

Let $h: Y \to W$ be any measurable function so

$$\mathbb{E}\Big[ig\|h(\mathbf{y})-\mathbf{w}ig\|_W^2\Big]=\mathbb{E}\Big[\mathbb{E}\big[ig\|h(\mathbf{y})-\mathbf{w}ig\|_W^2\mid\mathbf{y}ig]\Big].$$

Next, W is a Hilbert space so we can expand the squared norm:

$$\begin{split} & \left\|h(\mathbf{y}) - \mathbf{w}\right\|_{W}^{2} = \left\|h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}] + \mathbb{E}[\mathbf{w} \mid \mathbf{y}] - \mathbf{w}\right\|_{W}^{2} \\ & = \left\|h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}]\right\|_{W}^{2} + 2\left\langle h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}], \mathbb{E}[\mathbf{w} \mid \mathbf{y}] - \mathbf{w}\right\rangle_{W} + \left\|\mathbf{w} - \mathbb{E}[\mathbf{w} \mid \mathbf{y}]\right\|_{W}^{2}. \end{split}$$

By the law of total expectation and the linearity of the inner product, we get

$$\mathbb{E}\Big[2\Big\langle h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}], \mathbb{E}[\mathbf{w} \mid \mathbf{y}] - \mathbf{w}\Big\rangle_{W} \mid \mathbf{y}\Big] \\ = 2\Big\langle h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}], \mathbb{E}[\mathbf{w} \mid \mathbf{y}] - \mathbb{E}[\mathbf{w} \mid \mathbf{y}]\Big\rangle_{W} = 2\big\langle h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}], 0\big\rangle_{W} = 0$$

and $\|\mathbf{w} - \mathbb{E}[\mathbf{w} \mid \mathbf{y}]\|_{W}^{2}$ is independent of *h*.

Jonas Adler jonasadler.com

Combining all of this gives

$$\underset{h: Y \to W}{\operatorname{arg min}} \mathbb{E}\left[\left\|h(\mathbf{y}) - \mathbf{w}\right\|_{W}^{2}\right] = \underset{h: Y \to W}{\operatorname{arg min}} \mathbb{E}\left[\left\|h(\mathbf{y}) - \mathbb{E}[\mathbf{w} \mid \mathbf{y}]\right\|_{W}^{2}\right]$$

where $h^*(y) = \mathbb{E}[\mathbf{w} | \mathbf{y}]$ is the solution to the right hand side.

Theorem (Conditional Mean)

Assume that Y is a measurable space, W a measurable Hilbert space, and \mathbf{y} and \mathbf{w} are Y- and W-valued random variables, respectively. Let

$$h^* = \operatorname*{arg\,min}_{h: Y o W} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{w} \big\|_W^2 \Big].$$

Then $h^*(y) := \mathbb{E}[\mathbf{w} \mid \mathbf{y} = y].$

• Suppose we want to compute the conditional mean

$$\mathbb{E}\Big[\mathbf{x} \mid \mathbf{y} = y\Big]$$

• Suppose we want to compute the conditional mean

$$\mathbb{E}\Big[\mathbf{x} \mid \mathbf{y} = y\Big]$$

• We need to find the best measurable function h

$$\min_{h: \mathbf{Y} \to X} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{x} \big\|_X^2 \Big].$$

• Suppose we want to compute the conditional mean

$$\mathbb{E}\Big[\mathbf{x} \mid \mathbf{y} = y\Big]$$

• We need to find the best measurable function h

$$\min_{h: \mathbf{Y} \to X} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{x} \big\|_X^2 \Big].$$

• NN are universal approximators, train a neural network $h_{ heta}: Y o X$

$$\operatorname*{arg\,min}_{ heta} \sum_{i=1}^{n} \left\| h_{ heta}(\mathbf{y}_i) - \mathbf{x}_i \right\|_X^2$$

• Suppose we want to compute the conditional variance

$$\mathbb{E}\Big[ig(\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y}]ig)^2 \mid \mathbf{y} = y\Big]$$

• Suppose we want to compute the conditional variance

$$\mathbb{E}\Big[ig(\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y}]ig)^2 \mid \mathbf{y} = y\Big]$$

- Note that $\textbf{w} = \big(\textbf{x} - \mathbb{E}[\textbf{x} \mid \textbf{y}]\big)^2$ so we seek to minimize

$$\min_{h: Y \to X} \mathbb{E} \Big[\|h(\mathbf{y}) - (\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y}])^2 \|_X^2 \Big].$$

• Suppose we want to compute the conditional variance

$$\mathbb{E}\Big[ig(\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y}]ig)^2 \mid \mathbf{y} = y\Big]$$

- Note that $\textbf{w} = \big(\textbf{x} - \mathbb{E}[\textbf{x} \mid \textbf{y}]\big)^2$ so we seek to minimize

$$\min_{h: Y \to X} \mathbb{E} \Big[\|h(\mathbf{y}) - (\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y}])^2 \|_X^2 \Big].$$

• Train neural networks h (mean) and g (variance)

$$h^{*} = \min_{h: Y \to X} \mathbb{E} \Big[\|h(\mathbf{y}) - \mathbf{x}\|_{X}^{2} \Big]$$
$$g^{*} = \min_{g: Y \to X} \mathbb{E} \Big[\|g(\mathbf{y}) - (\mathbf{x} - h(\mathbf{y}))^{2}\|_{X}^{2} \Big]$$

• Suppose we want to compute the conditional variance

$$\mathbb{E}\Big[ig(\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y}]ig)^2 \mid \mathbf{y} = y\Big]$$

- Note that $\textbf{w} = \big(\textbf{x} - \mathbb{E}[\textbf{x} \mid \textbf{y}]\big)^2$ so we seek to minimize

$$\min_{h: Y \to X} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \big(\mathbf{x} - \mathbb{E} [\mathbf{x} \mid \mathbf{y}] \big)^2 \big\|_X^2 \Big].$$

• Train neural networks $h_{ heta}$ (mean) and g_{ϕ} (variance)

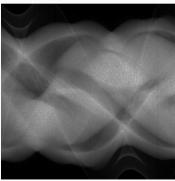
$$\theta^* = \min_{\theta} \sum_{i=1}^{n} ||h_{\theta}(\mathbf{y}_i) - \mathbf{x}||_X^2$$
$$\phi^* = \min_{\phi} \sum_{i=1}^{n} ||g_{\phi}(\mathbf{y}_i) - (\mathbf{x} - h_{\theta^*}(\mathbf{y}))^2||_2^2$$

Jonas Adler jonasadler.com

Deep Direct Estimation: Example application

Problem setup:

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).



FBP

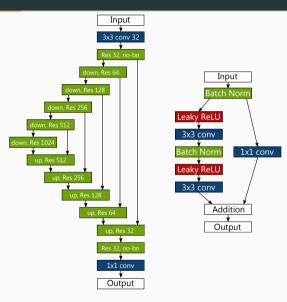
Standard FBP

Phantom

Deep Direct Estimation: Example application

Solution method:

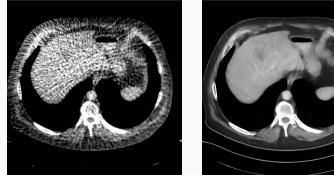
- Post-processing $\ensuremath{\textcircled{\sc s}}$
- Network architecture $h_ heta = \hat{h}_ heta \circ A^\dagger$
- $\hat{h}_{ heta}$ is a residual U-Net



Standard FBP

Jonas Adler jonasadler.com

Deep Direct Estimation: Example application



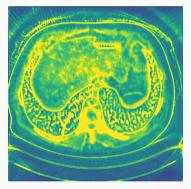
Standard FBP

Mean

Deep Direct Estimation: Example application

Standard FBP

Mean



Standard deviation

Deep Direct Estimation: Conclusion

• Most estimators we are interested in can be formulated as

$$\mathbb{E}\Big[\mathbf{w} \mid \mathbf{y} = y\Big]$$

for some w.

• We can characterize this as the solution to

$$\min_{h: Y \to X} \mathbb{E} \Big[\big\| h(\mathbf{y}) - \mathbf{w} \big\|_W^2 \Big].$$

- This is *exactly* classical NN training (with a different target)
- We can train networks to find almost any estimator!
- But we need a new network for every estimator...

Deep posterior sampling

Generative models for uncertainty quantification in inverse problems

What would we do if we had $\mathbb{P}(\mathbf{x} \mid \mathbf{y})$?

• Variance

$$\mathbb{E}\Big[ig(\mathbf{x} - \mathbb{E}[\mathbf{x} \mid \mathbf{y} = y]ig)^2 \mid \mathbf{y}\Big]$$

• Covariance

$$\mathbb{E}\Big[\big(\mathbf{x}_1 - \mathbb{E}[\mathbf{x}_1 \mid \mathbf{y} = y]\big)\big(\mathbf{x}_2 - \mathbb{E}[\mathbf{x}_2 \mid \mathbf{y} = y]\big) \mid \mathbf{y}\Big]$$

• Bayesian hypothesis testing

$$\mathbb{P}(\mathbf{x} \in \Omega \mid \mathbf{y} = y) = \mathbb{E}\Big[\mathbbm{1}_{\Omega}(\mathbf{x}) \mid \mathbf{y} = y\Big]$$

Deep Posterior Sampling: The main insight

• The quantities we're looking for have the form

$$\mathbb{E}\Big[\mathbf{w} \mid \mathbf{y} = y\Big]$$

- Mean (reconstruction): $\mathbf{w} = \mathbf{x}$
- Variance: $\mathbf{w} = (\mathbf{x} \mathbb{E}[\mathbf{x} \mid \mathbf{y} = y])^2$
- Hypothesis: $\mathbf{w} = \mathbb{1}_{\mathbf{x}_1 > \mathbf{x}_2}$
- Law of large numbers: Assume w_i I.I.D. from $\mathbf{w} \mid \mathbf{y} = y$, then a.s.

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} w_i \to \mathbb{E} \Big[\mathbf{w} \mid \mathbf{y} = y \Big]$$

• All we need is I.I.D. samples!

Jonas Adler jonasadler.com

```
Input: Training data (x_i) generated by (\mathbf{x}).
```

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approaches:

- Variational Auto-Encoders
- Plug and Play Generative Networks
- Pixel Recurrent Models
- Generative Adversarial Networks

- Main idea: train two networks, encoder E and decoder D
- Train to approximate identity

 $\mathbf{x} \approx D(E(\mathbf{x}))$

while also enforcing

 $E(\mathbf{x}) \approx \mathbf{z}$

• Sample from

 $D(\mathbf{z})$

- Main idea: Langevin dynamics
- Denoisers approximate gradient

$$\frac{D(x + \epsilon dx) - x}{\epsilon} = \nabla \log \mathbb{P}(x)$$

• Create Markov chain

$$x_{k+1} := x_k + dt
abla \log \pi(x_k) + \sqrt{2dt} \mathcal{N}(0,1)$$

Pixel Recurrent Networks

- Main idea: Chain rule
- Expand probability pixel-wise

$$egin{aligned} \mathcal{P}(x) &= \mathbb{P}(x_1, x_2, \dots, x_N) \ &= \mathbb{P}(x_1) \mathbb{P}(x_2, \dots, x_N \mid x_1) \ &= \mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3, \dots, x_N \mid x_1, x_2) \ &= \prod_{i=1}^N \mathbb{P}(x_i \mid x_{< i}) \end{aligned}$$

- Each of the $\mathbb{P}(x_i \mid x_{\leq i})$ are real valued random variables
- Discretize and model explicitly using RNN

P

Generative Advesarial Networks

- Main idea: train two networks, generator G and discriminator D
- Generator tries to generate "true" samples, discriminator tries to say "good/bad"

Generative Advesarial Networks

- Main idea: train two networks, generator G and discriminator D
- Generator tries to generate "true" samples, discriminator tries to say "good/bad"

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

 $\min_{\theta} \ \mathcal{W}(\mathsf{G}_{\theta}, \mathbb{P}(\mathbf{x}))$

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

 $\min_{\theta} \mathcal{W}(\mathsf{G}_{\theta}, \mathbb{P}(\mathbf{x}))$

- G_{θ} is a probability distribution on model parameters in X.
- \mathcal{W} is the Wasserstein 1-distance, measures how close G_{θ} is to the distribution.

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

 $\min_{\theta} \mathcal{W}(\mathsf{G}_{\theta}, \mathbb{P}(\mathsf{x}))$

Unfeasible: Not possible to evaluate \mathcal{W} ($\mathbb{P}(\mathbf{x})$ unknown).

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\mathsf{D} \in Lip(X)} \mathbb{E} \Big[\mathsf{D}(\mathbf{x}) - \mathsf{D}(\mathsf{G}_{\theta}) \Big] \right\}.$$

Unfeasible: Not possible to evaluate \mathcal{W} ($\mathbb{P}(\mathbf{x})$ unknown).

 \implies Re-write using the Kantorovich-Rubinstein dual characterization of $\mathcal{W}.$

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\mathsf{D} \in Lip(\mathsf{X})} \mathbb{E} \Big[\mathsf{D}(\mathbf{x}) - \mathsf{D}(\mathsf{G}_{\theta}) \Big] \right\}.$$

Unfeasible: Maximization over all Lipschitz operators

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\phi} \mathbb{E} \left[\mathsf{D}_{\phi}(\mathbf{x}) - \mathsf{D}_{\phi}(\mathsf{G}_{\theta}) \right] \right\}$$

Unfeasible: Maximization over *all* Lipschitz operators \implies Let discriminator be a NN.

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\phi} \mathbb{E} \left[\mathsf{D}_{\phi}(\mathbf{x}) - \mathsf{D}_{\phi}(\mathsf{G}_{\theta}) \right] \right\}$$

Unfeasible: How is G_{θ} random?

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{z}} \Big[\mathsf{D}_{\phi}(\mathbf{x}) - \mathsf{D}_{\phi}(\mathsf{G}_{\theta}(\mathbf{z})) \Big] \right\}.$$

Unfeasible: How is G_{θ} random?

 \implies Write as deterministic function of random input

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\phi} \mathbb{E}_{\mathbf{x},\mathbf{z}} \Big[\mathsf{D}_{\phi}(\mathbf{x}) - \mathsf{D}_{\phi}(\mathsf{G}_{\theta}(\mathbf{z})) \Big] \right\}.$$

Unfeasible: Expectation over samples

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\phi} \left[\frac{1}{N} \sum_{i=1}^{N} \mathsf{D}_{\phi}(x_i) - \mathbb{E}_{\mathbf{z}} \mathsf{D}_{\phi}(\mathsf{G}_{\theta}(\mathbf{z})) \right] \right\}.$$

Goal: Sample from unknown distribution $\mathbb{P}(x)$.

Approach: Learn how to sample from distribution by solving

$$\min_{\theta} \left\{ \max_{\phi} \left[\frac{1}{N} \sum_{i=1}^{N} \mathsf{D}_{\phi}(x_i) - \mathbb{E}_{\mathbf{z}} \mathsf{D}_{\phi}(\mathsf{G}_{\theta}(\mathbf{z})) \right] \right\}.$$

Approximation to Wasserstein distance useful for deep learning

Goal: Sample from unknown posterior $\mathbb{P}(x \mid y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \mathbb{E}_{\mathbf{y} \sim \mathbb{P}_{data}} \Big[\mathcal{W} \big(\mathsf{G}_{\theta}(\mathbf{y}), \mathbb{P}(\mathbf{x} \mid \mathbf{y}) \big) \Big].$$

Goal: Sample from unknown posterior $\mathbb{P}(x \mid y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \mathbb{E}_{\mathbf{y} \sim \mathbb{P}_{data}} \Big[\mathcal{W} \big(\mathsf{G}_{\theta}(\mathbf{y}), \mathbb{P}(\mathbf{x} \mid \mathbf{y}) \big) \Big].$$

Condition on data y, else same steps above (with some technical additions)

Goal: Sample from unknown posterior $\mathbb{P}(x \mid y)$.

Approach: Learn how to sample from posterior by solving

$$\min_{\theta} \left\{ \max_{\phi} \frac{1}{N} \sum_{i=1}^{N} \left[\mathsf{D}_{\phi}(x_i, \mathbf{y}_i) - \mathbb{E}_{\mathbf{z}} \left[\mathsf{D}_{\phi}(\mathsf{G}_{\theta}(\mathbf{z}, \mathbf{y}_i), \mathbf{y}_i) \right] \right] \right\}.$$

Condition on data y, else same steps above (with some technical additions)

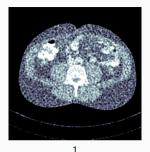
Goal: Sample from unknown posterior $\mathbb{P}(x \mid y)$.

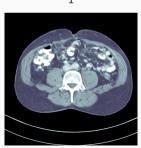
Approach: Learn how to sample from posterior by solving

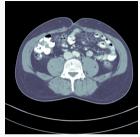
$$\min_{\theta} \left\{ \max_{\phi} \frac{1}{N} \sum_{i=1}^{N} \left[\mathsf{D}_{\phi}(x_i, y_i) - \mathbb{E}_{\mathbf{z}} \left[\mathsf{D}_{\phi}(\mathsf{G}_{\theta}(\mathbf{z}, y_i), y_i) \right] \right] \right\}.$$

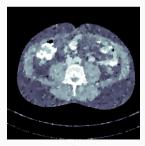
Formulation useful for deep learning

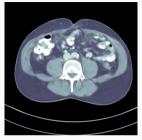
One of the images is the ground truth (phantom), can you figure out which one?



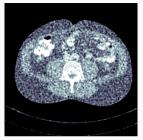




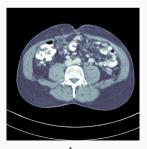


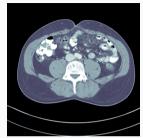


One of the images is the ground truth (phantom), can you figure out which one?

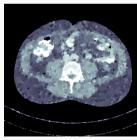


FBP

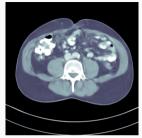




2

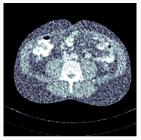


Total variation

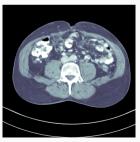


Conditional mean

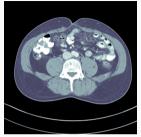
One of the images is the ground truth (phantom), can you figure out which one?

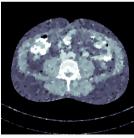


FBP

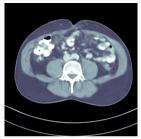


Deep posterior sample

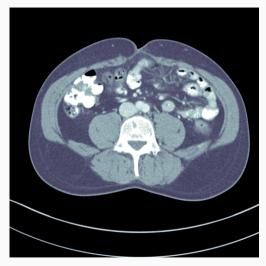


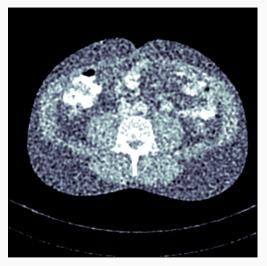


Total variation



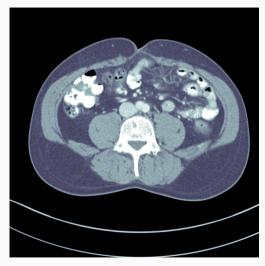
Conditional mean

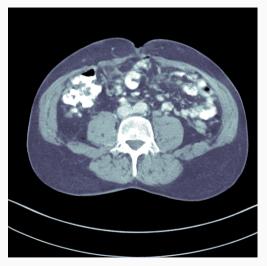




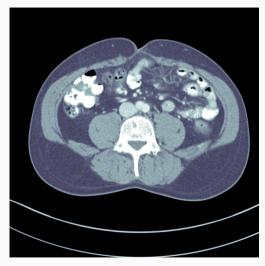
FBP reconstruction

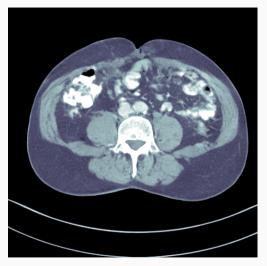
Phantom



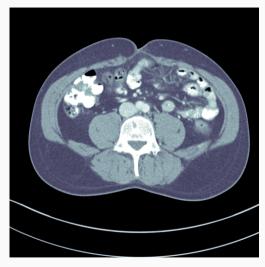


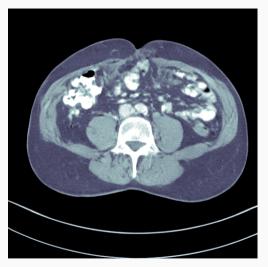
Phantom



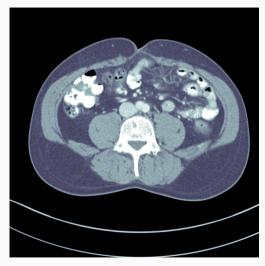


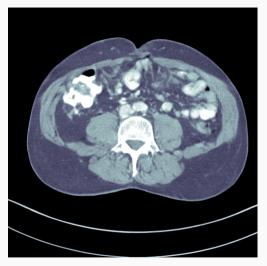
Phantom



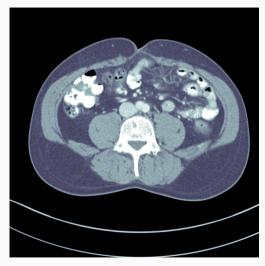


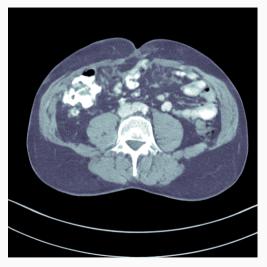
Phantom



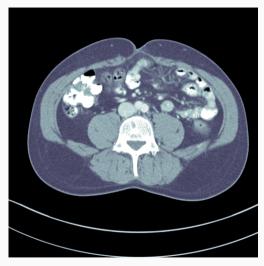


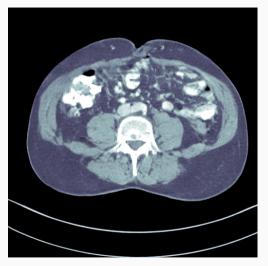
Phantom



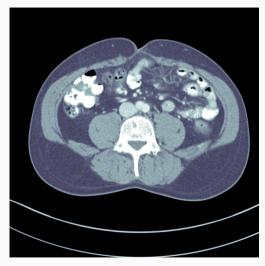


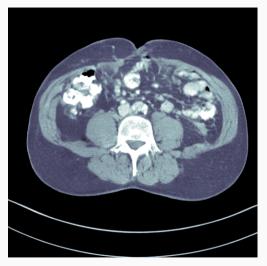
Phantom



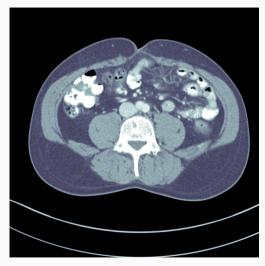


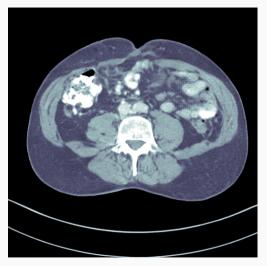
Phantom



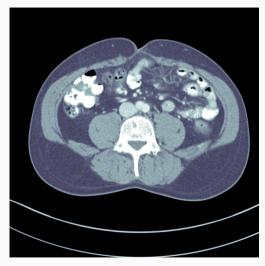


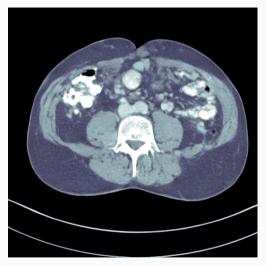
Phantom



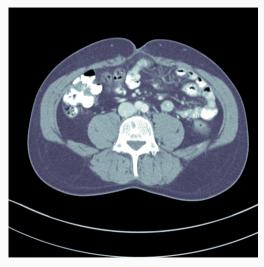


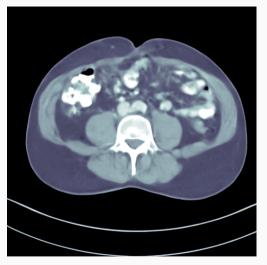
Phantom



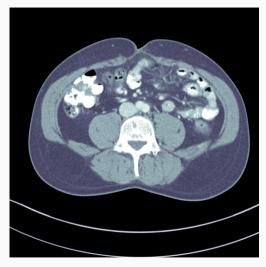


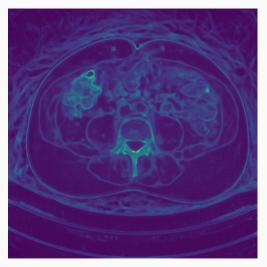
Phantom



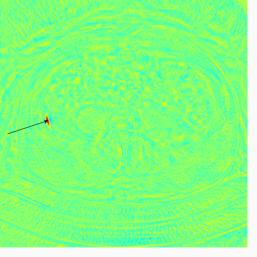


Conditional mean (1000 samples)

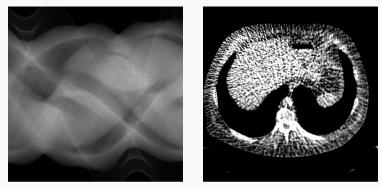




Standard deviation



Correlation w.r.t. single point



Data

FBP

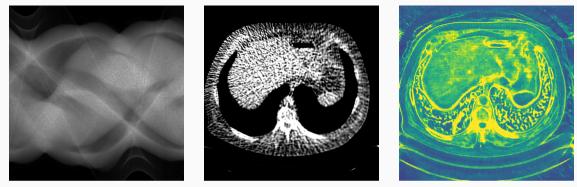
- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

Data

FBP

Posterior mean

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

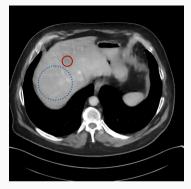


Data

FBP

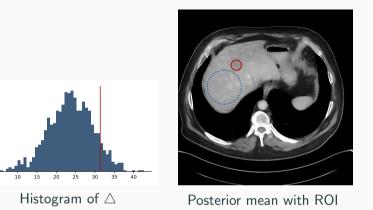
Standard deviation

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

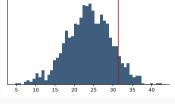


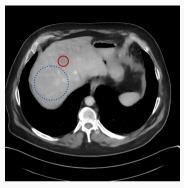
Posterior mean with ROI

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
- Liver lesion: $\bigtriangleup =$ difference in average contrast between ROI and liver.
- $\bullet\,$ Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%



- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
- Liver lesion: $\bigtriangleup =$ difference in average contrast between ROI and liver.
- $\bullet\,$ Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%





Normal dose image

Histogram of \triangle

Posterior mean with ROI

- Case: Patient with suspected metastasis to the liver.
- Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).
- Liver lesion: $\bigtriangleup =$ difference in average contrast between ROI and liver.
- $\bullet\,$ Hypothesis test: Based on 1000 samples, the ROI contains a lesion at 95%

• Most estimators we are interested in can be formulated as

$$\mathbb{E}\Big[\mathbf{w} \mid \mathbf{y} = y\Big]$$

- We compute them by sampling
- Train a neural network to generate samples (here GAN)
- Can compute any estimator on the fly

- Bayesian Inversion is an extremely powerful framework
- Historical problems with computational feasibility
- Deep Learning methods allow us to compute any estimator quickly and with the "true" prior
- If we know the estimator a-priori: Deep Direct Estimation
- On the fly: Posterior Sampling



Thank you for your attention!