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Overview

• Bayesian Inversion

• Direct Estimation

• Posterior Sampling
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Bayesian Inversion



Bayesian Inversion

Inverse problem (Statistical viewpoint)

Data y ∈ Y is a single observation generated by Y -valued random variable y where

y = A(x) + e.

Solution: A probability distribution on model parameter space X

P(x | y = y)

This is a full characterization of the reconstruction, including uncertainty. We don’t

need to select estimators (e.g. task adapted becomes irrelevant).
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Bayesian Inversion: Theory

Recall some nice properties from yesterday:

• The posterior almost always exists

• The mapping

y → P(x | y = y)

is continuous.

• We can characterize convergence (Bernstein-von Mises)
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Bayesian Inversion: Classical methods

• Bayes Law:

P(x | y) =
P(y | x)P(x)

P(y)

• We know the data likelihood

P(y | x)

• Only have to specify the prior

P(x)

• Standard approach: Gibbs priors

P(x) = e−S(x)
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Bayesian Inversion: Samples

S(x) = ‖x‖2
2 S(x) = ‖∇x‖2

2 S(x) = ‖∆x‖2
2
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Bayesian Inversion: Samples

S(x) = ‖∇x‖1 S(x) = ‖x‖B1
1,1

S(x) = ‖x‖B2
1,1
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Bayesian Inversion: Examples of natural images
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Bayesian Inversion: Estimators

• The posterior is enormously high dimensional

P(x | y)

• Example: 2× 2 image, 32 bits/pixel. Dimensionality of the posterior:

322×2 = 1024× 1024

Hence the posterior of 2× 2 images is as high dimensional as 1024× 1024 images!

• Not even a chance that we could store it.

• All we can hope for is some estimator.
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Bayesian Inversion: Conclusions

• Framework for solving inverse problems

• Strong regularizing properties

• Uncertainty quantification

• Basically parameter free

• Classical methods are relatively slow and require closed form prior
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Deep Direct Estimation

Estimating uncertanity (and more) using neural networks without P(x | y)



Bayesian Inversion: Hopes and dreams

What would we do if we had P(x | y)?

• Variance

E
[(
x− E[x | y = y ]

)2 | y = y
]

• Covariance

E
[(
x1 − E[x1 | y = y ]

)(
x2 − E[x2 | y = y ]

)
| y = y

]
• Bayesian hypothesis testing

P(x ∈ Ω | y = y) = E
[
1Ω(x) | y = y

]
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Deep Direct Estimation: The main insight

• The quantities we’re looking for have the form

E
[
w | y = y

]

• Mean (reconstruction): w = x

• Variance: w =
(
x− E[x | y = y ]

)2

• Hypothesis: w = 1x1>x2

• Deep neural networks are trained by solving

min
h : Y→W

E
[∥∥h(y)−w

∥∥2

W

]
.
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Deep Direct Estimation: Theoretical foundations

Theorem (Conditional Mean)
Assume that Y is a measurable space, W a measurable Hilbert space, and y and w are

Y - and W -valued random variables, respectively. Let

h∗ = arg min
h : Y→W

E
[∥∥h(y)−w

∥∥2

W

]
.

Then h∗(y) := E
[
w | y = y

]
.
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Deep Direct Estimation: Theoretical foundations

Let h : Y →W be any measurable function so

E
[∥∥h(y)−w

∥∥2

W

]
= E

[
E
[∥∥h(y)−w

∥∥2

W
| y
]]
.

Next, W is a Hilbert space so we can expand the squared norm:∥∥h(y)−w
∥∥2

W
=
∥∥h(y)− E[w | y] + E[w | y]−w

∥∥2

W

=
∥∥h(y)− E[w | y]

∥∥2

W
+ 2
〈
h(y)− E[w | y],E[w | y]−w

〉
W

+
∥∥w − E[w | y]

∥∥2

W
.

By the law of total expectation and the linearity of the inner product, we get

E
[
2
〈
h(y)− E[w | y],E[w | y]−w

〉
W
| y
]

= 2
〈
h(y)− E[w | y],E[w | y]− E[w | y]

〉
W

= 2
〈
h(y)− E[w | y], 0

〉
W

= 0

and
∥∥w − E[w | y]

∥∥2

W
is independent of h.
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Deep Direct Estimation: Theoretical foundations

Combining all of this gives

arg min
h : Y→W

E
[∥∥h(y)−w

∥∥2

W

]
= arg min

h : Y→W
E
[∥∥h(y)− E[w | y]

∥∥2

W

]
where h∗(y) = E[w | y] is the solution to the right hand side.
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Deep Direct Estimation: Computing the mean

• Suppose we want to compute the conditional mean

E
[
x | y = y

]

• We need to find the best measurable function h

min
h : Y→X

E
[∥∥h(y)− x

∥∥2

X

]
.

• NN are universal approximators, train a neural network hθ : Y → X

arg min
θ

n∑
i=1

∥∥hθ(yi )− xi
∥∥2

X
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Deep Direct Estimation: Computing the variance

• Suppose we want to compute the conditional variance

E
[(
x− E[x | y]

)2 | y = y
]

• Note that w =
(
x− E[x | y]

)2
so we seek to minimize

min
h : Y→X

E
[∥∥h(y)−

(
x− E[x | y]

)2∥∥2

X

]
.
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Deep Direct Estimation: Computing the variance

• Suppose we want to compute the conditional variance

E
[(
x− E[x | y]

)2 | y = y
]

• Note that w =
(
x− E[x | y]

)2
so we seek to minimize

min
h : Y→X

E
[∥∥h(y)−

(
x− E[x | y]

)2∥∥2

X

]
.

• Train neural networks h (mean) and g (variance)

h∗ = min
h : Y→X

E
[∥∥h(y)− x

∥∥2

X

]
g∗ = min

g : Y→X
E
[∥∥g(y)−

(
x− h(y)

)2∥∥2

X

]
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Deep Direct Estimation: Computing the variance

• Suppose we want to compute the conditional variance

E
[(
x− E[x | y]

)2 | y = y
]

• Note that w =
(
x− E[x | y]

)2
so we seek to minimize

min
h : Y→X

E
[∥∥h(y)−

(
x− E[x | y]

)2∥∥2

X

]
.

• Train neural networks hθ (mean) and gφ (variance)

θ∗ = min
θ

n∑
i=1

∥∥hθ(yi )− x
∥∥2

X

φ∗ = min
φ

n∑
i=1

∥∥gφ(yi )−
(
x− hθ∗(y)

)2∥∥2

X
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Deep Direct Estimation: Example application

Problem setup:

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

Phantom FBP Standard FBP
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Deep Direct Estimation: Example application

Solution method:

• Post-processing /

• Network architecture hθ = ĥθ ◦ A†

• ĥθ is a residual U-Net

Input

3x3 conv 32

Res 32, no-bn

down, Res 64

down, Res 128

down, Res 256

down, Res 512

down, Res 1024

up, Res 512

up, Res 256

up, Res 128

up, Res 64

up, Res 32

Res 32, no-bn

Output

1x1 conv

Input

Batch Norm

Batch Norm

3x3 conv

Leaky ReLU

Leaky ReLU

3x3 conv

1x1 conv

Addition

Output
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Deep Direct Estimation: Example application

Standard FBP

Mean Standard deviation
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Deep Direct Estimation: Example application

Standard FBP Mean

Standard deviation
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Deep Direct Estimation: Example application

Standard FBP Mean Standard deviation
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Deep Direct Estimation: Conclusion

• Most estimators we are interested in can be formulated as

E
[
w | y = y

]
for some w.

• We can characterize this as the solution to

min
h : Y→X

E
[∥∥h(y)−w

∥∥2

W

]
.

• This is exactly classical NN training (with a different target)

• We can train networks to find almost any estimator!

• But we need a new network for every estimator...
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Deep posterior sampling

Generative models for uncertainty quantification in inverse problems



Bayesian Inversion: Hopes and dreams

What would we do if we had P(x | y)?

• Variance

E
[(
x− E[x | y = y ]

)2 | y
]

• Covariance

E
[(
x1 − E[x1 | y = y ]

)(
x2 − E[x2 | y = y ]

)
| y
]

• Bayesian hypothesis testing

P(x ∈ Ω | y = y) = E
[
1Ω(x) | y = y

]
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Deep Posterior Sampling: The main insight

• The quantities we’re looking for have the form

E
[
w | y = y

]

• Mean (reconstruction): w = x

• Variance: w =
(
x− E[x | y = y ]

)2

• Hypothesis: w = 1x1>x2

• Law of large numbers: Assume wi I.I.D. from w | y = y , then a.s.

lim
N→∞

1

N

N∑
i=1

wi → E
[
w | y = y

]
• All we need is I.I.D. samples!
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Generative models in Machine Learning

Input: Training data (xi ) generated by (x).

Goal: Sample from unknown distribution P(x).

Approaches:

• Variational Auto-Encoders

• Plug and Play Generative Networks

• Pixel Recurrent Models

• Generative Adversarial Networks
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Variational Auto-Encoders

• Main idea: train two networks, encoder E and decoder D

• Train to approximate identity

x ≈ D(E (x))

while also enforcing

E (x) ≈ z

• Sample from

D(z)
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Plug and Play Generative Networks

• Main idea: Langevin dynamics

• Denoisers approximate gradient

D(x + εdx)− x

ε
= ∇ logP(x)

• Create Markov chain

xk+1 := xk + dt∇ log π(xk) +
√

2dtN (0, 1)
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Pixel Recurrent Networks

• Main idea: Chain rule

• Expand probability pixel-wise

P(x) = P(x1, x2, . . . , xN)

= P(x1)P(x2, . . . , xN | x1)

= P(x1)P(x2 | x1)P(x3, . . . , xN | x1, x2)

=
N∏
i=1

P(xi | x<i )

• Each of the P(xi | x<i ) are real valued random variables

• Discretize and model explicitly using RNN
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Generative Advesarial Networks

• Main idea: train two networks, generator G and discriminator D

• Generator tries to generate ”true” samples, discriminator tries to say ”good/bad”
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ
W
(
Gθ,P(x)

)
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ
W
(
Gθ,P(x)

)
• Gθ is a probability distribution on model parameters in X .

• W is the Wasserstein 1-distance, measures how close Gθ is to the distribution.
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ
W
(
Gθ,P(x)

)
Unfeasible: Not possible to evaluate W (P(x) unknown).

=⇒ Re-write using the Kantorovich-Rubinstein dual characterization of W.
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.
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[
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]}
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ

{
max
φ

E x,z

[
Dφ(x)− Dφ(Gθ(z))

]}
.

Unfeasible: How is Gθ random?

=⇒ Write as deterministic function of random input
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ

{
max
φ

E x,z

[
Dφ(x)− Dφ(Gθ(z))

]}
.

Unfeasible: Expectation over samples

=⇒ Use empirical distribution
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Wasserstein GAN

Input: Unsupervised data (xi ) generated by x.

Goal: Sample from unknown distribution P(x).

Approach: Learn how to sample from distribution by solving

min
θ

{
max
φ

[
1

N

N∑
i=1

Dφ(xi )− Ez Dφ(Gθ(z))

]}
.

Approximation to Wasserstein distance useful for deep learning
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

Ey∼Pdata

[
W
(
Gθ(y),P(x | y)

)]
.
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

Ey∼Pdata

[
W
(
Gθ(y),P(x | y)

)]
.

Condition on data y, else same steps above (with some technical additions)
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Conditional Wasserstein GAN

Input: Supervised training data (xi , yi ) generated by (x, y).

Goal: Sample from unknown posterior P(x | y).

Approach: Learn how to sample from posterior by solving

min
θ

{
max
φ

1

N

N∑
i=1

[
Dφ(xi , yi )− Ez

[
Dφ(Gθ(z, yi ), yi )

]]}
.

Formulation useful for deep learning
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One of the images is the ground truth (phantom), can you figure out which one?

1 2 3
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One of the images is the ground truth (phantom), can you figure out which one?

FBP 2 Conditional mean

4 Total variation



One of the images is the ground truth (phantom), can you figure out which one?

FBP Phantom Conditional mean

Deep posterior sample Total variation



Phantom FBP reconstruction



Phantom Posterior sample 1



Phantom Posterior sample 2



Phantom Posterior sample 3



Phantom Posterior sample 4



Phantom Posterior sample 5



Phantom Posterior sample 6



Phantom Posterior sample 7



Phantom Posterior sample 8



Phantom Posterior sample 9



Phantom Conditional mean (1000 samples)



Phantom Standard deviation



Phantom Correlation w.r.t. single point



Data FBP

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Data FBP Posterior mean

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Data FBP Standard deviation

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Normal dose image
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Histogram of 4

Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Normal dose image
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Histogram of 4 Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Normal dose image
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Histogram of 4 Posterior mean with ROI

• Case: Patient with suspected metastasis to the liver.

• Data: Clinical helical 3D CT data, 2% of a normal dose (ultra low-dose).

• Liver lesion: 4 = difference in average contrast between ROI and liver.

• Hypothesis test: Based on 1 000 samples, the ROI contains a lesion at 95%



Deep Posterior Sampling: Conclusion

• Most estimators we are interested in can be formulated as

E
[
w | y = y

]
• We compute them by sampling

• Train a neural network to generate samples (here GAN)

• Can compute any estimator on the fly
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Conclusion

• Bayesian Inversion is an extremely powerful framework

• Historical problems with computational feasibility

• Deep Learning methods allow us to compute any estimator quickly and with the

”true” prior

• If we know the estimator a-priori: Deep Direct Estimation

• On the fly: Posterior Sampling
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Thank you for your attention!
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