Task Oriented Reconstruction for Inverse Problems
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Medical Image Reconstruction

y=A(x")+e.
yeyY Data
x*eX Image
A X—=>Y Forward operator
ecyY Noise
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Medical Image Reconstruction

yeyY Data ﬁ)
x*eX Image «—
A: X =Y Forward operator "ATLY
ecyY Noise

The problem is ill-posed: non-uniqueness, instability
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Learned inversion methods

Main complication: A" : Y — X.
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Fully learned reconstruction

Goal: Learn "the whole” mapping from data to signal
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Learned post-processing

Use deep learning to improve the result of another reconstruction
Af = Ng o AT

where AT is some reconstruction and A is a learned post-processing.
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Learned lterative Reconstruction

Idea: Include physics knowledge (A, .A") inside CNN.
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Learned lterative Reconstruction

Idea: Include physics knowledge (A, .A") inside CNN.

e Gradient (Learned/Deep Gradient Descent, Variational Networks)

A"(A(x) —y) A"(A(x) - y)

CNN—>m—>CNN—>i : |—>CNN—>
|
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Learned lterative Reconstruction

Idea: Include physics knowledge (A, A*) inside CNN.

e Gradient (Learned/Deep Gradient Descent, Variational Networks)

e Primal-Dual

A*

CNN — |

Jonas Adler  jonasadler.com Task Oriented Reconstruction

A*

. — CNN —



Learned lterative Reconstruction

e Several learned methods for image reconstruction
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Learned lterative Reconstruction

e Several learned methods for image reconstruction
e These are all end-to-end differentiable

e Trains like any neural network
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Loss functions

e Train by minimizing Bayes risk

L(0) = E Cx(Aj(y), )
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Loss functions

e Train by minimizing Bayes risk
L(9) = E £x(A)(y),x)

Traditional losses

o [x1 — %3

e |Ix1 — xl1

Fancy losses
e Adversarial

e Perceptual

Medical imaging is not done for fun, we want to solve a !

How do we define " good for segmentation /classification /radiomics” ?
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Task Adapted Reconstruction: Introduction

e We can learn to go from data to reconstruction
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Task Adapted Reconstruction: Introduction

e We can learn to go from data to reconstruction
e Combine with learned task operator

e End-to-end differentiable training!
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Task Adapted Reconstruction: Approaches

e Sequential training: First train a reconstruction, then train the task
L(6) = By [ (A1), %)
L(9) = Eya[to(Ts 0 Al (v).d)].

Jonas Adler  jonasadler.com Task Oriented Reconstruction 12 /15



Task Adapted Reconstruction: Approaches

e Sequential training: First train a reconstruction, then train the task
L(8) = Bxy [tx (A (v).%)].
L(9) = Eya[to(Ts 0 Ab.(y), d)]

e End-to-end training: Straight from data to task

L(6,9) =E,q [eD (To o Al(y), d)] .

Jonas Adler  jonasadler.com Task Oriented Reconstruction 12 /15



Task Adapted Reconstruction: Approaches

e Sequential training: First train a reconstruction, then train the task
L(8) = Eay | £x (A)(y),%) |
L(¥) = Eyq [z:D(TI, o Ab.(y), d)]

e End-to-end training: Straight from data to task
L(0,9) = E, 4 [I;D(TU o Al(y), d)} .

e Task Adapted Reconstruction: Anything in between

L(8,9) = Buy| Clx (A}(y).X) + (1 = C)o(Ty 0 Al(y), d) |
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e 7 CT brain scans

e Segmented semi-manually
e Simulated low-dose data

Task: Segment white matter
Reconstruction A}: Learned Primal-Dual
Task Ty: U-Net
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End-to-End Sequential




Conclusions

e Reconstruction is often seen as a " pre-processing” step in image analysis
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Conclusions

e Reconstruction is often seen as a " pre-processing” step in image analysis
e Deep learning for image reconstruction = end-to-end learning

e Combining reconstruction with segmentation seems to give the best results
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