Task Oriented Reconstruction for Inverse Problems

Jonas Adler^{1, 2} Sebastian Lunz³ Olivier Verdier¹ Carola-Bibane Schönlieb³ Ozan Öktem¹

¹KTH - Royal Institute of Technology

²Elekta

³University of Cambridge

$$y = \mathcal{A}(x^*) + e.$$

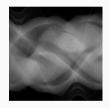
$$\mathbf{y} = \mathcal{A}(\mathbf{x}^*) + \mathbf{e}.$$

$$y=\mathcal{A}(\mathbf{x}^*)+e.$$

Data Image Forward operator Noise

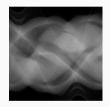
$$y = \mathcal{A}(x^*) + e.$$

Data Image Forward operator Noise



$$y=\mathcal{A}(x^*)+\boldsymbol{e}.$$

Data Image Forward operator Noise



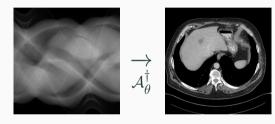
$$y = \mathcal{A}(x^*) + e.$$

$$y = \mathcal{A}(x^*) + e.$$

The problem is ill-posed: non-uniqueness, instability

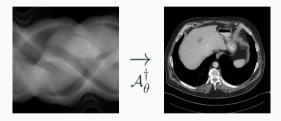
Learned inversion methods

Main complication: $\mathcal{A}^{\dagger}: Y \to X$.



Learned inversion methods

Main complication: $\mathcal{A}^{\dagger}: Y \to X$.

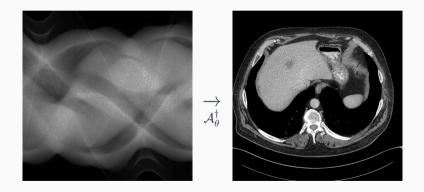


- Fully learned
- Learned post-processing
- Learned iterative schemes

Jonas Adler jonasadler.com

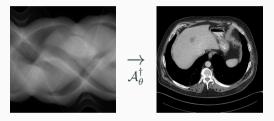
Goal: Learn "the whole" mapping from data to signal

Goal: Learn "the whole" mapping from data to signal



Learned inversion methods

Main complication: $\mathcal{A}_{\theta}^{\dagger}: Y \to X$.



- Fully learned
- Learned post-processing
- Learned iterative schemes

Jonas Adler jonasadler.com

Learned post-processing

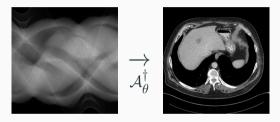
Use deep learning to improve the result of another reconstruction

$$\mathcal{A}^{\dagger}_{ heta} = {\sf \Lambda}_{ heta} \circ \mathcal{A}^{\dagger}$$

where \mathcal{A}^{\dagger} is some reconstruction and Λ_{θ} is a learned post-processing.

Learned inversion methods

Main complication: $\mathcal{A}_{\theta}^{\dagger}: Y \to X$.



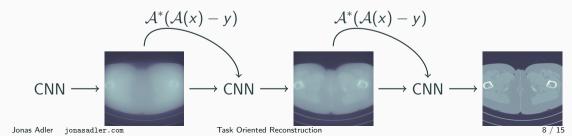
- Fully learned
- Learned post-processing
- Learned iterative schemes

Jonas Adler jonasadler.com

Idea: Include physics knowledge $(\mathcal{A}, \mathcal{A}^*)$ inside CNN.

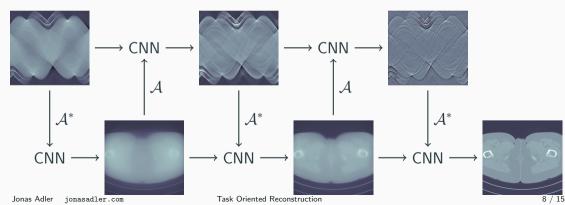
Idea: Include physics knowledge $(\mathcal{A}, \mathcal{A}^*)$ inside CNN.

• Gradient (Learned/Deep Gradient Descent, Variational Networks)



Idea: Include physics knowledge $(\mathcal{A}, \mathcal{A}^*)$ inside CNN.

- Gradient (Learned/Deep Gradient Descent, Variational Networks)
- Primal-Dual



• Several learned methods for image reconstruction

- Several learned methods for image reconstruction
- These are all end-to-end differentiable

- Several learned methods for image reconstruction
- These are all end-to-end differentiable
- Trains like any neural network

• Train by minimizing Bayes risk

$$L(heta) = \mathbb{E} \ \ell_X(\mathcal{A}^{\dagger}_{ heta}(\mathsf{y}),\mathsf{x})$$

• Train by minimizing Bayes risk

$$L(\theta) = \mathbb{E} \ \ell_X(\mathcal{A}^{\dagger}_{\theta}(\mathsf{y}),\mathsf{x})$$

• Traditional losses

•
$$||x_1 - x_2||_2^2$$

• $||x_1 - x_2||_1$

• Train by minimizing Bayes risk

$$L(\theta) = \mathbb{E} \ \ell_X(\mathcal{A}^{\dagger}_{\theta}(\mathsf{y}),\mathsf{x})$$

- Traditional losses
 - $||x_1 x_2||_2^2$
 - $||x_1 x_2||_1$
- Fancy losses
 - Adversarial
 - Perceptual

• Train by minimizing Bayes risk

$$L(\theta) = \mathbb{E} \ \ell_X(\mathcal{A}^{\dagger}_{\theta}(\mathsf{y}),\mathsf{x})$$

- Traditional losses
 - $||x_1 x_2||_2^2$
 - $||x_1 x_2||_1$
- Fancy losses
 - Adversarial
 - Perceptual
- Medical imaging is not done for fun, we want to solve a task!

• Train by minimizing Bayes risk

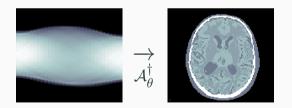
$$L(\theta) = \mathbb{E} \ \ell_X(\mathcal{A}^{\dagger}_{\theta}(\mathsf{y}),\mathsf{x})$$

- Traditional losses
 - $||x_1 x_2||_2^2$
 - $||x_1 x_2||_1$
- Fancy losses
 - Adversarial
 - Perceptual
- Medical imaging is not done for fun, we want to solve a task!
- How do we define "good for segmentation/classification/radiomics"?

Jonas Adler jonasadler.com

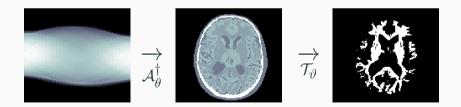
Task Adapted Reconstruction: Introduction

• We can learn to go from data to reconstruction



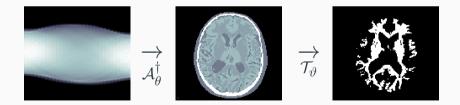
Task Adapted Reconstruction: Introduction

- We can learn to go from data to reconstruction
- Combine with learned task operator



Task Adapted Reconstruction: Introduction

- We can learn to go from data to reconstruction
- Combine with learned task operator
- End-to-end differentiable training!



Task Adapted Reconstruction: Approaches

• Sequential training: First train a reconstruction, then train the task

$$\begin{split} L(\theta) &= \mathbb{E}_{\mathsf{x},\mathsf{y}} \Big[\ell_{X} \big(\mathcal{A}_{\theta}^{\dagger}(\mathsf{y}), \mathsf{x} \big) \Big]. \\ L(\vartheta) &= \mathbb{E}_{\mathsf{y},\mathsf{d}} \Big[\ell_{D} \big(\mathcal{T}_{\vartheta} \circ \mathcal{A}_{\theta^{*}}^{\dagger}(\mathsf{y}), \mathsf{d} \big) \Big]. \end{split}$$

Task Adapted Reconstruction: Approaches

• Sequential training: First train a reconstruction, then train the task

$$\begin{split} L(\theta) &= \mathbb{E}_{\mathsf{x},\mathsf{y}}\Big[\ell_{X}\big(\mathcal{A}_{\theta}^{\dagger}(\mathsf{y}),\mathsf{x}\big)\Big].\\ L(\vartheta) &= \mathbb{E}_{\mathsf{y},\mathsf{d}}\Big[\ell_{D}\big(\mathcal{T}_{\vartheta}\circ\mathcal{A}_{\theta^{*}}^{\dagger}(\mathsf{y}),\mathsf{d}\big)\Big] \end{split}$$

• End-to-end training: Straight from data to task

$$L(\theta, \vartheta) = \mathbb{E}_{\mathsf{y},\mathsf{d}} \Big[\ell_D \big(\mathcal{T}_{\vartheta} \circ \mathcal{A}_{\theta}^{\dagger}(\mathsf{y}), \mathsf{d} \big) \Big].$$

Task Adapted Reconstruction: Approaches

• Sequential training: First train a reconstruction, then train the task

$$\begin{split} L(\theta) &= \mathbb{E}_{\mathsf{x},\mathsf{y}}\Big[\ell_{X}\big(\mathcal{A}_{\theta}^{\dagger}(\mathsf{y}),\mathsf{x}\big)\Big].\\ L(\vartheta) &= \mathbb{E}_{\mathsf{y},\mathsf{d}}\Big[\ell_{D}\big(\mathcal{T}_{\vartheta}\circ\mathcal{A}_{\theta^{*}}^{\dagger}(\mathsf{y}),\mathsf{d}\big)\Big] \end{split}$$

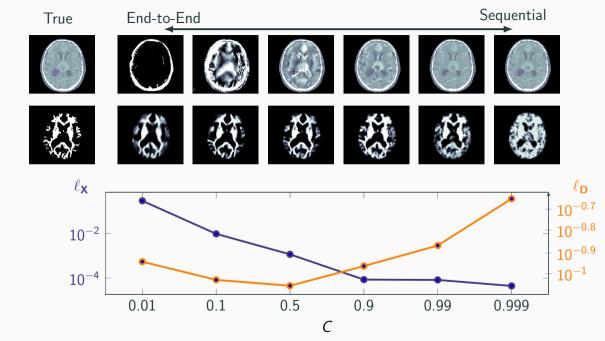
• End-to-end training: Straight from data to task

$$L(\theta,\vartheta) = \mathbb{E}_{\mathsf{y},\mathsf{d}}\Big[\ell_D\big(\mathcal{T}_\vartheta \circ \mathcal{A}_\theta^{\dagger}(\mathsf{y}),\mathsf{d}\big)\Big].$$

• Task Adapted Reconstruction: Anything in between

$$L(\theta,\vartheta) = \mathbb{E}_{\mathsf{x},\mathsf{y},\mathsf{d}} \Big[C\ell_X \big(\mathcal{A}^{\dagger}_{\theta}(\mathsf{y}),\mathsf{x} \big) + (1-C)\ell_D \big(\mathcal{T}_{\vartheta} \circ \mathcal{A}^{\dagger}_{\theta}(\mathsf{y}),\mathsf{d} \big) \Big].$$

- 7 CT brain scans
 - Segmented semi-manually
 - Simulated low-dose data
- Task: Segment white matter
- Reconstruction $\mathcal{A}_{\theta}^{\dagger}$: Learned Primal-Dual
- Task \mathcal{T}_{ϑ} : U-Net



• Reconstruction is often seen as a "pre-processing" step in image analysis

- Reconstruction is often seen as a "pre-processing" step in image analysis
- Deep learning for image reconstruction \implies end-to-end learning

- Reconstruction is often seen as a "pre-processing" step in image analysis
- Deep learning for image reconstruction \implies end-to-end learning
- Combining reconstruction with segmentation seems to give the best results

- Reconstruction is often seen as a "pre-processing" step in image analysis
- Deep learning for image reconstruction \implies end-to-end learning
- Combining reconstruction with segmentation seems to give the best results

Deep Learning and Inverse Problems 21-25 Jan 2019.