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Inverse Problems

y = T (xtrue) + δy .

y ∈ Y Data

xtrue ∈ X Image

T : X → Y Forward operator

δy ∈ Y Noise

T−→

←−
” T −1 ”

The problem is ill-posed: non-uniqueness, instability
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Model-driven inversion

• Assume that we know P(x) and P(y |x) and use Bayes’ law

P(x |y) =
P(x)P(y |x)

P(y)

Maximum a-posteriori (MAP) reconstruction

T †(y) = arg max
x

P(x |y) = arg min
x

[log P(y |x) + log P(x)]

• Major complications:

• How do we pick P(x)?

• How do we solve minimization?
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Model-driven inversion

Standard approach: Gibbs-style priors p(x) = e−R(x)

‖x‖2
2 ‖∇x‖2

2 ‖∆x‖2
2 ‖∇x‖1 ‖x‖B1

1,1
‖x‖B2

1,1

Actual humans:
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Data-driven inversion

• What if we could instead specify P(x) by examples x1, x2, . . . , xn?

• Trivial idea, use empirical distribution:

P(x) =
1

n

∑
i

δxi (x)

Useless in practice, X is to large. Smoothing (KDE) does not help much.

• Most successful approaches rely on dictionary learning, but we still need to solve

an optimization problem to find the MAP estimator.
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Supervised learning

• We are given training data (xi , yi ) such that T (xi ) ≈ yi .

• Looking for T † such that T †(yi ) ≈ xi .

• We give a class of operators T †θ : Y → X

• Parametrized by θ which we learn

• Selected by optimization of a loss function L(θ)

θ∗ = arg min
θ

L(θ)
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Loss functions

• How do we pick the loss L(θ)?

• This depends on what we want to achieve,

typically we’re looking for conditional mean.

E(x | y)

• Characterization:

E(x | · ) = arg min
h : Y→X

E
[∥∥h(y)− x

∥∥2

X

]
.

where optimization is taken over all functions.

• To approximate the conditional expectation, we pick

L(θ) = E
[∥∥T †θ(y)− x

∥∥2

X

]
.

which gives T †θ(y) ≈ E(x | y)
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Learned inversion methods

Architecture: Specification of the class of operators {T †θ}θ∈Θ.

Main complication: T †θ : Y → X .

−→
T †θ

• Fully learned

• Learned post-processing

• Learned iterative schemes
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Fully learned reconstruction

Goal: Learn ”the whole” mapping from data to signal

−→
T †θ
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Fully learned reconstruction

Several works:

Tomographic image reconstruction using artificial neural networks.

Paschalis et. al. Nucl Instrum Methods Phys Res A 2004

Tomographic image reconstruction based on artificial neural network (ANN)

techniques

Argyrou et. al. NSS/MIC 2012

Image reconstruction by domain-transform manifold learning.

Zhu et. al. Nature 2018

Problem: T typically has symmetries, but the network has to learn them.

Example: 3D CBCT, data: 108 pixels and 108 voxels =⇒ 1016 connections!
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Learned post-processing

Use deep learning to improve the result of another reconstruction

T †θ = Λθ ◦ T †

where T † is some reconstruction (FBP, TV, . . . ) and Λθ is a learned post-processing.

−→
T †

−→
Λθ

Jonas Adler jonasadl@kth.se Deep Reconstruction 12 / 32



Learned post-processing

Allows separation of inversion and learning, data can be seen as (T †(y)︸ ︷︷ ︸
∈X

, x︸︷︷︸
∈X

).

The problem becomes an image processing problem =⇒ easy to solve.

Won AAPM Low-Dose CT Grand Challenge:

A deep convolutional neural network using directional wavelets for low-dose X-ray

CT reconstruction

Kang et. al. 2016

Jonas Adler jonasadl@kth.se Deep Reconstruction 13 / 32



Learned post-processing

Allows separation of inversion and learning, data can be seen as (T †(y)︸ ︷︷ ︸
∈X

, x︸︷︷︸
∈X

).

The problem becomes an image processing problem =⇒ easy to solve.

Won AAPM Low-Dose CT Grand Challenge:

A deep convolutional neural network using directional wavelets for low-dose X-ray

CT reconstruction

Kang et. al. 2016

Jonas Adler jonasadl@kth.se Deep Reconstruction 13 / 32



Learned inversion methods

Architecture: Specification of the class of operators {T †θ}θ∈Θ.

Main complication: T †θ : Y → X .

• Fully learned

• Learned post-processing

• Learned iterative schemes

Jonas Adler jonasadl@kth.se Deep Reconstruction 14 / 32



Learned iterative reconstruction

• Problem: Data y ∈ Y , reconstruction x ∈ X

How to include data in each iteration?

• Inspiration from iterative optimization methods

x∗ = arg min
x

1

2
|| T (x)− y ||2Y

Algorithm 1 Generic iterative optimization algorithm

1: for i = 1, . . . do

2: xi+1 ← Update
(
xi
)

Gradient descent:

Update
(
xi
)

= fi − α∇f (xi )

Jonas Adler jonasadl@kth.se Deep Reconstruction 15 / 32



Learned iterative reconstruction

• Problem: Data y ∈ Y , reconstruction x ∈ X

How to include data in each iteration?

• Inspiration from iterative optimization methods

x∗ = arg min
x

1

2
|| T (x)− y ||2Y

Algorithm 1 Generic iterative optimization algorithm

1: for i = 1, . . . do

2: xi+1 ← Update
(
xi
)

Gradient descent:

Update
(
xi
)

= fi − α∇f (xi )

Jonas Adler jonasadl@kth.se Deep Reconstruction 15 / 32



Learned iterative reconstruction

• With f (x) = − log P(y | x) (maximum likelihood)

Update
(
xi
)

= fi + α∇ log P(y | xi )

• With prior f (x) = − log P(x | y) (maximum a-posteriori), using Bayes:

Update
(
xi
)

= fi + α
(
∇ log P(y | xi ) +∇ log P(xi )

)
• But P(x) is unknown! Learn its ”gradient” Λθ ≈ ∇ log P(x):

Update
(
xi
)

= fi + α
(
∇ log P(y | xi ) + Λθ(xi )

)
• Learn everything except gradient of data likelihood:

Update
(
xi
)

= Λθ
(
xi ,∇ log P(y | xi )

)
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Learned gradient descent

• Set a stopping criteria (fixed number of steps, I )

• Pick a noise model (here, Gaussian noise)

−∇ log P(y | x) = T ∗(T (x)− y)

Algorithm 2 Learned gradient descent

1: for i = 1, . . . , I do

2: xi+1 ← Λθ
(
xi , T ∗(T (xi )− y)

)
3: T †θ(g)← xI

We separate problem dependent (and possibly global) components into T ∗(T (xi )− y),

and prior dependent (local) components into Λθ!
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A and Öktem, IEEE TMI 2018

Jonas Adler jonasadl@kth.se Deep Reconstruction 18 / 32



References

ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI

Yang et. al. NIPS 2016

Recurrent inference machines for solving inverse problems

Putzky and Welling, arXiv 2017

Solving ill-posed inverse problems using iterative deep neural networks
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A and Öktem, IEEE TMI 2018

Jonas Adler jonasadl@kth.se Deep Reconstruction 18 / 32



References

ADMM-Net: A Deep Learning Approach for Compressive Sensing MRI

Yang et. al. NIPS 2016

Recurrent inference machines for solving inverse problems

Putzky and Welling, arXiv 2017

Solving ill-posed inverse problems using iterative deep neural networks
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Results

Results for CT with Human data

• Inverse problem:

y = P(x) + δy

• Geometry: fan beam 1000 angles

• Noise: Poisson noise (low dose CT)

• Training data: 2000 512× 512 pixel slices

Compare to:

• Analytic Pseudo-Inverse (FBP)

• Variational methods (TV-regularization)

• Post-processing deep learning by U-Net
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Phantom FBP

PSNR 33.65 dB, SSIM 0.830, 423 ms



Phantom TV

PSNR 37.48 dB, SSIM 0.946, 64 371 ms



Phantom Learned post-processing

PSNR 41.92 dB, SSIM 0.941, 463 ms



Phantom Learned Iterative

PSNR 44.11 dB, SSIM 0.969, 620 ms



Comments

• Very large quantitative improvement

• Noticeable visual improvement

• Very short run-times

• Looks oversmoothed
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Oversmoothing

• Optimal reconstruction operator given by conditional expectation

T †θ(y) ≈ E (x | y) =

∫
xdP(x | y)

• This is a pointwise-average

• Small scale variations (texture, edges) are lost

• Is there some better estimator? That depends on what you want.

• The only truly general answer is the whole posterior, P(x | y).

Jonas Adler jonasadl@kth.se Deep Reconstruction 22 / 32



Oversmoothing

• Optimal reconstruction operator given by conditional expectation

T †θ(y) ≈ E (x | y) =

∫
xdP(x | y)

• This is a pointwise-average

• Small scale variations (texture, edges) are lost

• Is there some better estimator? That depends on what you want.

• The only truly general answer is the whole posterior, P(x | y).

Jonas Adler jonasadl@kth.se Deep Reconstruction 22 / 32



Oversmoothing

• Optimal reconstruction operator given by conditional expectation

T †θ(y) ≈ E (x | y) =

∫
xdP(x | y)

• This is a pointwise-average

• Small scale variations (texture, edges) are lost

• Is there some better estimator? That depends on what you want.

• The only truly general answer is the whole posterior, P(x | y).

Jonas Adler jonasadl@kth.se Deep Reconstruction 22 / 32



Oversmoothing

• Optimal reconstruction operator given by conditional expectation

T †θ(y) ≈ E (x | y) =

∫
xdP(x | y)

• This is a pointwise-average

• Small scale variations (texture, edges) are lost

• Is there some better estimator? That depends on what you want.

• The only truly general answer is the whole posterior, P(x | y).

Jonas Adler jonasadl@kth.se Deep Reconstruction 22 / 32



Oversmoothing

• Optimal reconstruction operator given by conditional expectation

T †θ(y) ≈ E (x | y) =

∫
xdP(x | y)

• This is a pointwise-average

• Small scale variations (texture, edges) are lost

• Is there some better estimator? That depends on what you want.

• The only truly general answer is the whole posterior, P(x | y).

Jonas Adler jonasadl@kth.se Deep Reconstruction 22 / 32



Deep Bayesian Inversion

• Model: Assume that the reconstruction T †θ(y) is a random variable.

• Loss: Define the best reconstruction to be as close to the posterior as possible

θ∗ ∈ arg inf
θ∈Θ

Ey∼y

[
d
(
T †θ(y), (x | y = y)

)]
.

In the above, d is some distance function, measuring the distance between the

random variables T †θ(y) and (x | y = y).

• Possible options: Kullback-Leibler, Jensen-Shannon, etc.

• Those are not (a.e.) differentiable and finite! Prefer Wasserstein distance:

W(p, q) := inf
µ∈Π(p,q)

E(x,x′)∼µ
[
‖x− x′‖X

]
where the minimization is taken over all probability distributions on X × X .
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Deep Bayesian Inversion

• Optimal reconstruction given by:

θ∗ ∈ arg inf
θ∈Θ

Ey∼y

[
W
(
T †θ(y), (x | y = y)

)]
.

• Problems:

• But we have barely any idea about how (x | y = y) looks! We have only some

samples (xi , yi ).

• How can we compute the Wasserstein distance?
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Deep Posterior Sampling

• Kantorovich-Rubinstein dual characterisation of the Wasserstein distance:

W
(
T †θ(y), (x | y = y)

)
= sup

Dy : X→R
Dy∈Lip(1)

E
x∼(x|y=y), x ′∼T †θ(y)

[
Dy (x)− Dy (x ′)

]

where the discriminator Dy has Lipschitz constant ≤ 1.

• The parameters can thus be written as

θ∗ ∈ arg inf
θ∈Θ

Ey∼y

[
sup

Dy : X→R
Dy∈Lip(1)

E
x∼(x|y=y), x ′∼T †θ(y)

[
Dy (x)− Dy (x ′)

]]
.

Jonas Adler jonasadl@kth.se Deep Reconstruction 25 / 32



Deep Posterior Sampling

• Kantorovich-Rubinstein dual characterisation of the Wasserstein distance:

W
(
T †θ(y), (x | y = y)

)
= sup

Dy : X→R
Dy∈Lip(1)

E
x∼(x|y=y), x ′∼T †θ(y)

[
Dy (x)− Dy (x ′)

]

where the discriminator Dy has Lipschitz constant ≤ 1.

• The parameters can thus be written as

θ∗ ∈ arg inf
θ∈Θ

Ey∼y

[
sup

Dy : X→R
Dy∈Lip(1)

E
x∼(x|y=y), x ′∼T †θ(y)

[
Dy (x)− Dy (x ′)

]]
.

Jonas Adler jonasadl@kth.se Deep Reconstruction 25 / 32



Deep Posterior Sampling

• Using monotonicity, we can let Dy = D( · , y) where D: X × Y → R and reorder

θ∗ ∈ arg inf
θ∈Θ

sup
D: X×Y→R

D( · ,y)∈Lip(1)

Ey∼y

[
E
x∼(x|y=y), x ′∼T †θ(y)

[
D(x , y)− D(x ′, y)

]]
.

• We can collapse the expectations to the joint distribution

θ∗ ∈ arg inf
θ∈Θ

sup
D: X×Y→R

D( · ,y)∈Lip(1)

E
(x ,y)∼(x×y), x ′∼T †θ(y)

[
D(x , y)− D(x ′, y)

]
.

• Replace expectation by empirical mean

• Assume that reconstruction is of the form T †θ(y) ∼ G(y , z) where z ∼ N (0, I ).

• Use deep convolutional neural network to model the discriminator.
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Deep Posterior Sampling

Summary:

• Reconstructing a single point estimate (e.g. mean) does not tell the whole story

• We want the whole posterior

• Reconstruct a random variable

• Minimize the (empirical) Wasserstein distance using duality

θ∗ ∈ arg inf
θ∈Θ

sup
D: X×Y→R

D( · ,y)∈Lip(1)

Ey∼y

[
E
x∼(x|y=y), x ′∼T †θ(y)

[
D(x , y)− D(x ′, y)

]]
.
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Results

Results for CT with Human abdomen scans

• Machine: Siemens SOMATOM Definition AS+

• Geometry: 3D Helical scan

• Noise: Ultra-low dose CT (2% of normal dose)

• Training data from 9 patients.
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Samples

Phantom FBP Samples
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Statistics

Mean

Std

0 5 10 15 20 25 30 35
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Conclusions

• Machine learning allows us to handle complicated priors

• Combining model and data driven methods helps

• Beyond point estimates - Deep Posterior Sampling

Deep Learning and Inverse Problems, 21-25 Jan 2019.

jonasadler.com

Jonas Adler jonasadl@kth.se Deep Reconstruction 32 / 32

jonasadler.com


Conclusions

• Machine learning allows us to handle complicated priors

• Combining model and data driven methods helps

• Beyond point estimates - Deep Posterior Sampling

Deep Learning and Inverse Problems, 21-25 Jan 2019.

jonasadler.com

Jonas Adler jonasadl@kth.se Deep Reconstruction 32 / 32

jonasadler.com


Conclusions

• Machine learning allows us to handle complicated priors

• Combining model and data driven methods helps

• Beyond point estimates - Deep Posterior Sampling

Deep Learning and Inverse Problems, 21-25 Jan 2019.

jonasadler.com

Jonas Adler jonasadl@kth.se Deep Reconstruction 32 / 32

jonasadler.com


Conclusions

• Machine learning allows us to handle complicated priors

• Combining model and data driven methods helps

• Beyond point estimates - Deep Posterior Sampling

Deep Learning and Inverse Problems, 21-25 Jan 2019.

jonasadler.com

Jonas Adler jonasadl@kth.se Deep Reconstruction 32 / 32

jonasadler.com


Conclusions

• Machine learning allows us to handle complicated priors

• Combining model and data driven methods helps

• Beyond point estimates - Deep Posterior Sampling

Deep Learning and Inverse Problems, 21-25 Jan 2019.

jonasadler.com

Jonas Adler jonasadl@kth.se Deep Reconstruction 32 / 32

jonasadler.com

	anm0: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


